SciELO - Scientific Electronic Library Online

 
vol.24 issue2Activity coefficients of potassium chloride in aqueous solutions of potassium chloride and potassium phthalateElectrochemistry of caffeic acid in acetate-ethanolic solutions author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Portugaliae Electrochimica Acta

Print version ISSN 0872-1904

Port. Electrochim. Acta vol.24 no.2 Coimbra  2006

 

Semiconductive properties of anodic niobium oxides

 A.I. de Sá,a,*C.M. Rangel,a P. Skeldon,b G.E. Thompsonb

 

a DMTP/Electroquímica de Materiais, Instituto Nacional de Engenharia Tecnologia e Inovação, Paço do Lumiar, 22, 1649-038 Lisboa - Portugal

b Corrosion and Protection Centre, School of Materials, The University of Manchester, P.O. Box 88, Manchester M60 1QD, UK

 

 

Abstract

The semiconductive properties of anodic niobium oxides formed at constant potential and constant current density to different final voltages have been examined by Mott-Schottky analysis.

Thin anodic oxides were formed on sputtered niobium specimens at constant potential in the range of 2.5 to 10 VAg/AgCl in a borate buffer solution. Thicker oxides were formed, also on sputtered niobium specimens, at a constant current density of 5 mA cm-2 in 0.1 M ammonium pentaborate solution to final voltages of 10, 50 and 100 V. Capacitance measurements were performed in a borate buffer solution of pH 8.8, at a frequency range of 200 to 2000 Hz, at a sweep rate of 5 mV s-1 from +2.5 to –1 VAg/AgCl.

The results obtained show n-type semiconductor behaviour with a carrier density in the range of 8 ´ 1018 – 6 ´ 1019 cm-3 on films formed to 10 V. Thicker films showed lower carrier densities in the range of 1 ´ 1018 – 2 ´ 1018 cm-3 with a calculated charge depletion layer of 33-36 nm.

Keywords: niobium oxides, anodic oxides, Mott-Schottky behaviour.

 

Texto disponível em PDF

Full text only in PDF format

 

References

1. L. Young, in Anodic Oxide Films, Academic Press, London/New York, 1961. p.13.        [ Links ]

2. G.E. Thompson, Thin Solid Films 297 (1997) 192-201.

3. S. Wernick, R. Pinner, P.G. Sheashy, in The Surface Treatment and Finishing of Aluminium and its Alloys, ASM International Eds, 5th edition, Ohio, USA 1987. p. 289.

4. P.J. Harrop, D.S. Campbell, in Handbook of Thin Film Technology”, I.I. Maissel and R. Gland Eds, Mc. Graw-Hill. New York, 1970. p.16.

5. A. Vaskevich, M. Rosenvlum, E. Gileadi, J. Electrochem. Soc. 142 (1995) 1501-1508.

6. M. Schmitt, M.A. Aegerter, Electrochim. Acta 46 (2001) 2105-2513.

7. J.W. Schultze, M.M. Lohrengel, Electrochim. Acta 45 (2000) 2499-2513.

8. A.K. Vijh, in Oxides and Oxide Films, Marcel Dekker, Eds., New York, 1973. p.150.

9. K.E. Heusler, M. Shulze, Electrochim. Acta 20 (1975) 237-244.

10. A.I. de Sá, C.M. Rangel, P. Skeldon, G.E. Thompsom, Key Engineering Materials 230 (2002) 44-47.

11. N. Micaroni, C.N. Polo da Fonseca, F. Decker, M-A De Paoli, Solar Energy Materials & Solar Cells 60 (2000) 27-41.

12. W.P. Gomes, D. Vanmaekelbergh, Electrochim. Acta 41 (1996) 967-973.

13. S.R. Biaggio, N. Bocchi, R.C. Rocha-Filho, F.E. Varela, J. Braz. Chem. Soc. 8 (1997) 615-620.

14. F. Di Quarto, S. Piazza, S. Sunseri, Electrochim. Acta 35 (1990) 99-107.

15. F. Di Quarto, A. Di Paola, C. Sunseri, Electrochim. Acta 26, (1981) 1177-1184.

16. S.R. Biaggio, R.C. Rocha-Filho, J.R. Vilche, F.E. Varela, L.M. Gassa, Electrochim. Acta 42 (1997) 1751-1758.

17. N. Ibris, Russian Journal of Electrochemistry 39 (2003) 476-479.

18. A.D. Modestov, A.D. Dadydov, J. Electroanal. Chemistry 460 (1999) 214-225.

19. J.P.S. Pringle, Electrochim. Acta 25 (1980) 1423-1437.

 

*Corresponding author. E-mail address: Ana.Sa@ineti.pt

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License